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Abstract

The flow past a stationary circular cylinder and a downstream elastic circular cylinder in cruciform arrangement is

investigated at a constant Reynolds number of 150. The virtual boundary method is employed in this study. After the

validation of the numerical method, two cases are simulated. In Case 1, both cylinders are stationary. A critical spacing

is found to be about three diameters ðL=D ¼ 3Þ. Beyond this critical spacing, the modification of the wake of the

upstream cylinder due to the presence of the downstream cylinder is limited to the mixed region, whereas below this

critical spacing, the influenced region is significantly enlarged. In Case 2, we let the downstream cylinder vibrate in

response to the fluid forces acting on it, and the vibration is modeled by a spring-damper-mass system. The results show

that the peak amplitude of vibrations for the cruciform arrangement is lower than that for an isolated cylinder, and the

resonance region is wider than that of an isolated cylinder.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerous experimental and numerical investigations on the flow-induced oscillation of a single cylinder have been

carried out, as reviewed by Bearman (1984) and Williamson and Govardhan (2004). The interest in this class of

problems emanates primarily from its practical applications in a variety of engineering flows, such as transmission lines,

suspension bridges and heat exchangers. It is necessary to understand the complex phenomena exhibited by such

systems. Some experimental works can be referred to: by Griffin (1971), Williamson and Roshko (1988), Ongoren and

Rockwell (1988a, b) and Blevins (1990), and computational works by Mittal et al. (1991), Mittal and Tezduyar (1992),

Mittal and Kumar (1999) and Zhou et al. (1999).

Hydrodynamic interactions between a cylinder and another downstream one are significant. For example,

experimental results showed that the mean velocity of the wake flow is reduced due to the presence of the downstream

cylinder, and the fluctuating components of the force acting on the downstream one is altered by the wake (Ohya et al.,

1989; Zdravkovich, 1977). It was also observed that aerodynamic quantities such as the drag and lift forces, the pressure

distribution, the Strouhal number and the vortex-shedding patterns depend strongly on the member spacing.

Zdravkovich (1977) also discovered the discontinuity of those quantities at a critical spacing ratio L=D ranging between
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3.5 and 4. For the vortex-induced vibration involving two cylinders in tandem, staggered or side-by-side arrangement,

one can make reference to Zdravkovich (1985), Brika and Laneville (1999), Liu et al. (2001), and Mittal and Kumar

(2001).

For Case 1, where two stationary cylinders are arranged perpendicular to each other, the complex flow structures

have been investigated experimentally (Fox and Toy, 1988a, b; Fox, 1991). The experiments were performed in a

wind tunnel at a Reynolds number of 2� 104, and in a water tunnel facility at a Reynolds number of 2� 103,

respectively. The results showed that the structures of the turbulence developed in the cross geometry are of

considerable importance to the design and analysis of the associated thermohydraulic mechanics. It was suggested that

the turbulence at the center of the configuration may lead to increased heat transfer rates at the surface of the

downstream cylinder, particularly within a spanwise region of two and a half diameters from the center of the cross

(Fox and Toy, 1988a).

For Case 2 involving an oscillatory cylinder, Shirakashi et al. (1989) and Shirakashi (1994) investigated the effects of

adding a stationary cylinder downstream in a cruciform arrangement in a wind tunnel. The Kármán vortex resonance

of the upstream cylinder is effectively depressed by the closeness of the downstream cylinder, and vanishes when the gap

is smaller than half a cylinder diameter. Then, a new excitation is generated in the same gap range, and this excitation is

caused by longitudinal vortices periodically forming near the crossing part of the cylinders.

However, few numerical investigations have been carried out, due to the fact that accurate simulations with the

conventional methods based on body-fitted grids in the case of such a complicated configuration are difficult to

implement, when moving boundaries are involved. So, it is necessary to utilize a method based on a new concept, such

as the virtual boundary method introduced in the current paper.

The aim of this paper is to numerically investigate the flow between two circular cylinders in cruciform arrangement

using the virtual boundary method (Goldstein et al., 1993; Fadlun et al., 2000). The numerical method is first validated,

and it is demonstrated to be especially suitable for moving boundary problems. Two cases are then considered. For

Case 1, two cylinders are stationary at different spacings. For Case 2, the downstream cylinder is considered to be

elastic and subjected to transverse vibration in response to the unsteady fluid forces acting on it.
2. Mathematical models

2.1. Governing equations

The nondimensional Navier–Stokes equations for incompressible viscous flow are written as follows:

r � V
!
¼ 0,

DV
!

Dt
¼ �rpþ

1

Re
r2 V
!
þ F
!

add, ð1Þ

where F
!

add ¼ ðFx;Fy;FzÞ is the added force vector. The diameter D and the uniform free-stream velocity are the

characteristic length and velocity, respectively.

The Euler-explicit time discretization scheme is applied to the convective term and the second-order-implicit

Crank–Nicholson scheme is used for the viscous term. Spatial derivatives are discretized with the second-order central

finite difference. Ignoring the term of OðDt3Þ, the finally obtained algebraic equations can be solved using the generic

TDMA algorithm in the x, y and z direction sequentially. The pressure is solved from the pressure Poisson equation,

which is derived by applying the divergence operator to the momentum equations. The time-dependent term of the

pressure Poisson equation is dealt with as by Harlow and Welch (1965), and the derivatives are discretized by a second-

order central difference scheme. For detailed description of this method, the reader is referred to Zou et al. (2004,

2005a, b).

2.2. Structural dynamics modeling

The vibrating structure is considered to oscillate in the transverse direction only, and is considered to be a rigid body.

It is assumed that the downstream circular cylinder is mounted as a spring-damper-mass system, and the motion of the

cylinder can be described by the following equation:

d2zobj

dt2
þ 2aon

dzobj

dt
þ o2

nzobj ¼
FlðtÞ

m
, (2)
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where zobj is the instantaneous transverse displacement of the cylinder; a is the damping factor representing the intensity

of the damping due to structural dissipation, on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 2pf n is the angular natural frequency of the cylinder, m is

the mass per unit length of the cylinder and FlðtÞ is the induced lift force. Eq. (2) indicates that the response of the

cylinder is a function of the damping factor a, the frequency f n, the mass ratio M� ðM� ¼ m=rD2Þ and the lift force

FlðtÞ. It is reasonable to assume that the force term on the right-hand side of the equation is a constant within a time

step, as long as the time step is small enough. The equation can be solved easily using the Runge–Kutta method, once

the lift force is known from the flow field calculation. The lift force on the cylinder is calculated by integrating the added

force field. The response of the cylinder is calculated by solving Eq. (2), and then influences the fluid motion at the next

time step.
3. Numerical schemes

3.1. Virtual boundary method

The so-called virtual boundary method was first proposed by Goldstein et al. (1993) to treat the no-slip condition on

the boundary immersed in the flow field. The solid domain is assumed filled with fluid, and a virtual body-force term to

reflect the effect of the no-slip boundary condition is introduced in the Navier–Stokes equations. The body-force field

adopted in their work is governed by a feedback loop. Goldstein et al. (1993) applied this procedure to simulate a start-

up flow around a circular cylinder. Fadlun et al. (2000) presented an alternative expression for the added body force.

Instead of using a feedback forcing with arbitrary gain, they employed a direct force at as following:

F
!nþ1

¼ �RHS
��!n

þ
U
!nþ1

� u!
n

Dt
, (3)

where U
!nþ1

is the velocity of solid boundary point at current time level tþ Dt and u!
n
is the corresponding fluid

velocity at time level t. The term RHS
��!n

contains the convective, viscous and pressure gradient terms in the momentum

equation at time level t. Thus, the boundary condition can be fulfilled at each time level and no rigid stability limit is

required after the body force defined by Eq. (3) is introduced into the Navier–Stokes equations. There, the rigid limit in

a rigid body is that different parts of a rigid body are prevented from relative movement. In the present study, the added

body force given by Eq. (3) is imposed inside the body as well as on the boundary.

Inside the solid body, the added body force can be calculated directly at the grid point using the expression given by

Eq. (3). For the grid points near the surface but outside the body, a certain interpolation procedure is needed. Detailed

description is given as follows (see Fig. 1). In Fig. 1, pf ðxf ; yf ; zf Þ is a grid point near the solid surface and psðxs; ys; zsÞ is

the surface point lying on the line connecting pf and the center of the circle. In order to obtain the added body force

F
!
ðxs; ys; zsÞ on ps from Eq. (3), six virtual points are constructed and each point is one grid spacing away from ps. In

Fig. 1, four virtual points, a, b, c and d are displayed and another two virtual points lie in the directions perpendicular
ps

ps

pf

ds

b

a

d

c

Fig. 1. Body force on the surface is distributed to the grid nearby.
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to this plane. Using the variables on these six virtual points and the desired boundary velocities on ps, all first and

second derivatives in term RHS
��!n

can be evaluated at the point ps. To get the variables on a virtual point, we can use

trilinear interpolations with eight computational grid points around it. The effect of the body force F
!
ðxs; ys; zsÞ is

distributed to the nearby grid point pf using a linear interpolation, F
!
ðxf ; yf ; zf Þ ¼ ð1� ds=dxyzÞF

!
ðxs; ys; zsÞ. Here dxyz

is the diagonal length of the grid element and ds is the distance between ps and pf . It should be noted that the body force

is equal to zero for the grid points, if ds4dxyz is satisfied.

For a complex geometry, we have developed a search procedure to find a closest point ps to pf on the boundary, with

the line connecting these two points normal to the boundary. However, for the present case of a relatively simple

configuration, we employ the more efficient method introduced earlier.

The main advantage of the current approach is that flows with extremely complex internal boundaries can be

simulated with relative ease on simple Cartesian meshes, and the solver for fixed boundary problems is applicable to the

moving boundary case conveniently without any modification.
3.2. Computational domain and boundary conditions

In this study, a cuboid flow field is considered with the upstream cylinder located at 8D from the inflow boundary,

and the distance from the downstream cylinder center to the outflow boundary is 20D. The dimensions of the

computational domain in y and z directions are both 12D. The origin of the coordinate system is located at the center of

the upstream cylinder. The detailed geometric configuration is depicted in Fig. 2. A nonuniform Cartesian grid system is

generated in the flow domain. The grid is clustered near the cylinders and the grid spacing is increased in a proper with

increasing distance away from the surface of the cylinders.

The boundary conditions employed for the present investigation are as follows: (a) the free-slip conditions are

imposed at the transverse confining surfaces: qu=qy ¼ v ¼ qw=qy ¼ 0, and at the spanwise confining surfaces:

qu=qz ¼ w ¼ qv=qz ¼ 0. Both cylinders extend in their longitudinal directions to the computational boundaries. In the

vicinity of the two ends of the cylinders, no interpolation is needed, because we can obtain the velocities from the

velocity boundary conditions. (b) At the inlet, a constant streamwise velocity is used, with other velocity components

being zero, and the nonreflecting boundary condition is imposed at the outlet: q u!=qtþ uaq u!=qn ¼ 0, where ua is the

averaged streamwise velocity at the outlet, obtained from the velocities at the last time level. By introducing the

nonreflecting condition, the computational domain can be greatly reduced in the streamwise direction. (c) The pressure

Neumann condition is applied to the inflow, far field and outflow boundaries, and the pressure condition is imposed at

half-grid points near the domain boundaries (Abdallah, 1987a, b; Deng et al., 2006).
4. Computational validation

Validation of the numerical method is carried out in three steps; the first is to assess the reliability of the method for a

stationary cylinder in two-dimensional flow, the second is to demonstrate the efficiency and accuracy in predicting the

dynamic response of an elastic cylinder. The final step is to verify the ability of the method for three-dimensional

models, by the simulation of the flow around a three-dimensional cylinder.
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4.1. Two-dimensional flow around a circular cylinder

A rectangular domain is employed to simulate the flow over a stationary cylinder. The boundary conditions are

imposed in such a way that the flow is from the left toward the right of the domain. A circular cylinder is placed inside

the domain with its center being 8D away from the inlet and 25D away from the outlet. The domain has a transverse

dimension of 16D. These dimensions have been chosen in order to minimize the boundary effects on the flow. Fig. 3

shows the 275� 156 nonuniform mesh used in the present studies, and the grid near the cylinder is uniform. The

nonreflecting boundary condition is used on the outlet boundary. A uniform constant velocity is imposed at the domain

entrance, the top boundary and the bottom boundary.

In order to establish a grid-independent solution, computations have been performed for several meshes at Re ¼ 150.

The results obtained with six grid sizes are listed in Table 1 to illustrate the importance of fine near-body grid resolution

for the accuracy of the computed results. This grid refinement study is to verify the grid-independence of the results and

the accuracy of the method. The mean drag coefficients Cdmean and the nondimensional vortex shedding frequencies

(Strouhal numbers St) are presented in Table 1. They become grid independent for a grid size of Dx ¼ Dy ¼ 0:05,
therefore all the following simulations are carried out with such a grid size. Our drag coefficients at different Reynolds

numbers are compared with other numerical and experimental results, in Table 2. Very good agreement is seen.
Fig. 3. Nonuniform mesh used for the flow past a two-dimensional circular cylinder. Only every other grid line is shown in both

directions.

Table 2

Comparison of mean drag coefficient ðCdmeanÞ with those of other authors

Reynolds number 10 20 40 47 50 80 100 150

Park et al. (1998) 2.78 2.01 1.51 — — 1.35 1.33 —

Ye et al. (1999) — 2.03 1.52 — — 1.37 — —

Lima et al. (2003) 2.81 2.04 1.54 1.46 1.46 1.40 1.39 1.37

Present work 2.86 2.03 1.51 1.44 1.43 1.33 1.31 1.37

Table 1

Grid refinement study

Re ¼ 150

Dx ¼ Dy Cdmean St

0.100 1.415 0.167

0.075 1.508 0.171

0.065 1.395 0.174

0.055 1.377 0.180

0.050 1.370 0.183

0.045 1.370 0.183
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4.2. Vortex-induced vibrations of an elastic circular cylinder

Flow-induced vibration of an elastic structure is, in general, nonlinear. The vibration of the structure affects the fluid

flow around the structure, which in turn modifies the hydrodynamic forces on the structure and hence the structural

response. Representative studies carried out on elastic circular cylinders have been reviewed by Williamson and

Govardhan (2004). These studies, which covered a range of Reynolds number ðReÞ, showed that the vibration

amplitude depends on various parameters. Griffin (1992) derived a reduced damping parameter, Sg ¼ 8p2St2aM�, by

analyzing a group of data collected from different experiments. Here, St ¼ f sD=U1 is the Strouhal number, U1 being

the uniform inflow velocity and f s the vortex shedding frequency.

For the case of a stationary circular cylinder at Re ¼ 200, good agreement is obtained in this paper in comparison

with previous studies. Our Strouhal number is about 0.195, which agrees well with the experimental result of 0.197 from

Williamson (1996a), and the numerical result of 0.196 from Meneghini and Bearman (1995). For the case of an elastic

circular cylinder with one degree of transverse freedom the calculations are carried out at Re ¼ 200 and M� ¼ 1. The

initial flow field is from the case of the stationary circular cylinder. From its definition, Sg varies with the damping

factor a, and in the present study we let Sg vary from 0.01 to 10. In order to catch the maximum value of the vibration

amplitude, the frequency ratio is chosen around f n=f �s ¼ 1:0, where f n is the natural frequency of the cylinder and f �s the

vortex-shedding frequency of the rigid cylinder.

Our peak-to-peak vibration amplitude, 2Ymax=D is plotted versus Sg in Fig. 4, together with the numerical results of

Newman and Karniadakis (1995), the results of Zhou et al. (1999) and the data collected by Griffin (1992). It can be

observed that the present results show a good agreement with the numerical results of Newman and Karniadakis (1995),

and Zhou et al. (1999). All simulations show that the amplitude is limited as Sg approaches zero, and they decrease with

increasing Sg. The discrepancy between the simulations and the experiments could be due to the difference in the values

of the other parameters, such as Re and the mass ratio, and also the three-dimensionality in the wake.

In order to make comparisons with Zhou et al. (1999), the same parameters are chosen for the calculations:

Re ¼ 200, M� ¼ 1 and Sg ¼ 0:01. The frequency ratio, f n=f �s , ranges from 0.65 to 5.2. Fig. 5 shows the vortex pattern in

two typical cases of the frequency ratio: f n=f �s ¼ 1:73 and 1.49 (Fig. 5(a) and 5(b)). At f n=f �s ¼ 1:49, the separation

distances between vortices in the transverse and streamwise directions and the width of the wake start to change, and

two batches of the vortices are seen in Fig. 5(b). Fig. 5(c) and (d) show the results from Zhou et al. (1999) at the same

two frequency ratios, and a good qualitative agreement is reached. Fig. 6 shows the time histories of the drag and lift

force, together with the cross-flow displacement Y=D of the cylinder. In Fig. 6(a), the lift force and the cross-flow

displacement of the cylinder show a beating behavior at f n=f �s ¼ 1:73, and a low frequency is observed as a modulating

signal. This beating behavior has also been observed by Zhou et al. (1999), as shown in Fig. 6(c). At f n=f �s ¼ 1:49, our
amplitude of the drag force is a little larger than that obtained by Zhou et al. (1999), as seen from Fig. 6(d). The

comparison shows that the present numerical method can predict the response of a elastic cylinder well, both

qualitatively and quantitatively.
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Fig. 4. Flow-induced transverse vibration amplitude versus Sg. Dashed line: calculated results (two-dimensional) of Newman and

Karniadakis (1995) for Re ¼ 200 and M� ¼ 1; solid line: calculated results (two-dimensional) of Zhou et al. (1999) for Re ¼ 200 at

M� ¼ 1; symbols �; �;&;’,: experimental data collected by Griffin (1992); symbol %: present results for Re ¼ 200 and M� ¼ 1.
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Fig. 6. Time histories of Cd ;Cl and Y=D of an elastic cylinder with Sg ¼ 0:01 and M� ¼ 1. (a) f n=f �s ¼ 1:73, in present study; (b)

f n=f �s ¼ 1:49, in present study; (c) f n=f �s ¼ 1:73, by Zhou et al. (1999); (d) f n=f �s ¼ 1:49, by Zhou et al. (1999).

(a) (b)

(c) (d)

Fig. 5. Vortex pattern in the wake of an elastic cylinder for Sg ¼ 0:01 and M� ¼ 1. (a) f n=f �s ¼ 1:73, in present study; (b) f n=f �s ¼ 1:49,
in present study; (c) f n=f �s ¼ 1:73, by Zhou et al. (1999); (d) f n=f �s ¼ 1:49, by Zhou et al. (1999).

J. Deng et al. / Journal of Fluids and Structures 23 (2007) 715–731 721
4.3. Three-dimensional flow around a circular cylinder

In order to prove the ability of the numerical method to deal with three-dimensional problems, the simulation of the

flow over a three-dimensional circular cylinder is carried out. The grid in the section of the domain is similar to that

used in the case of a two-dimensional cylinder, and the same grid is repeated in all spanwise sections. The wake of a

bluff object, in particular a circular cylinder is known to undergo a ‘fast’ transition from a laminar two-dimensional
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Fig. 7. Three-dimensional vortex structures of a single cylinder obtained by the present study.
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state to a turbulent three-dimensional state, and the critical Reynolds number is about 190. The transition regime

involves two modes of three-dimensional instability (Mode A and Mode B), depending on the regime of Reynolds

number. In this paper, a l2-definition (Jeong and Hussain, 1995) is introduced to identify the vortex region. At

Re ¼ 220, Mode A instability obtained from our present study is presented in Fig. 7, and the corresponding spanwise

wavelength is about 4.0 and St ¼ 0:183. Williamson (1996a) indicated that the wavelength at Re ¼ 200 is 4.01, and

suggested a decreasing wavelength as Re increases. Williamson (1996b) found that St ¼ 0:188 for Re ¼ 220. The wake

pattern is also qualitatively comparable to experimental visualizations by Williamson (1992).
5. Results

5.1. Case 1—two stationary cylinders in cruciform arrangement

A simulation of the flow between two stationary circular cylinders in cruciform arrangement is performed first. The

side view of the three-dimensional vortex structures is shown in Fig. 8, from which one can observe that the spatial

structures of the flow between two stationary cruciform cylinders are different at various spacing ratios. When the

spacing ratio L=D43, the influence of the downstream cylinder on the wake of the upstream cylinder is restricted in the

region that the two flow wakes intersect, and out of this region the wake of the upstream cylinder maintains a regular

Kármán vortex street. When L=Dp3, the influence of the downstream cylinder to the wake of the upstream one is

enlarged, compared to the cases of larger spacing ratio (Fig. 8(c,d)). Two rows of three-dimensional streamwise vortex

structures can be observed in both sides of the mixed region.

From Williamson (1996a, b), the physical origin of the three-dimensional small-scale instabilities in the wake

of a single circular cylinder has attracted much attention. It has been recognized that the two instabilities scale on

two different physical features of the wake flow. The (long-wavelength) Mode A scales on the larger physical feature

in the wake flow, namely the primary vortex cores, and is shown to be due to an elliptic instability in these vortices.

The (short-wavelength) Mode B, on the other hand, scales on the smaller physical length scale, namely the braid

shear layer. In the present case of two circular cylinders in cruciform arrangement at Re ¼ 150, the instability

of the vortex can be explained by Mode A. When the downstream cylinder is set far enough from the upstream

one ðL=D43Þ, the flow shedding from the upstream cylinder looks smooth along the spanwise direction, and

only the immediate vortex tubes shedding from the upstream cylinder are extruded towards the upstream

direction in the middle part. When L=Dp3, the vortex pair immediately shedding from the upstream

cylinder is broken, and there exist no uninjured vortex tubes along the spanwise of the upstream cylinder, as shown

in Fig. 8(a, b). From Williamson’s theory, the immediate vortex pair in the near wake of the upstream cylinder plays a

key character on the instability of the whole wake from the upstream cylinder. When this vortex pair is disturbed, the

whole flow wake is changed, then two rows of streamwise vortices come into being in the flow wake as shown in

Fig. 8(a, b).

The planform of the three-dimensional vortex structures is shown in Fig. 9. We can observe that the whole wake

along the spanwise of the downstream cylinder is disordered, irrespective of the spacing between these two cylinders. It

can be concluded that the vortex shedding from the upstream cylinder will exert an impact on the downstream cylinder

and disturb all vortex tubes shedding from the downstream cylinder, including the immediate vortex pair behind it.

There is no stable region in the whole wake as shown in Fig. 9.

The lift coefficient time histories for different spacings are shown in Fig. 10. It is interesting to note that for L=D ¼ 4

and L=D ¼ 8, the lift amplitude of the downstream cylinder is smaller than that of the upstream cylinder. This is in

sharp contrast to the case for two cylinders in a tandem arrangement, where the lift amplitude for the downstream
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(a) (b)

(c) (d)

Fig. 9. Planform of the three-dimensional vortex structures (from positive to negative direction in the z-axis): (a) L=D ¼ 2; (b)

L=D ¼ 3; (c) L=D ¼ 4; (d) L=D ¼ 5.

(c) (d)

Fig. 8. Side-view of the three-dimensional vortex structures (from negative to positive direction in the y-axis): (a) L=D ¼ 2; (b)

L=D ¼ 3; (c) L=D ¼ 4; (d) L=D ¼ 5.
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cylinder is in general greater than that of the upstream one, due to the disturbed flow shedding from the upstream

cylinder. From Fig. 10, one can also find that for the upstream cylinder, when the spacing ratio is increased from 3 to 4,

a very significant change occurs. The peak-to-peak value of the lift coefficient for the upstream cylinder at L=D ¼ 4 is

almost three times as great as that for L=D ¼ 3.

Fourier analysis of the velocities is performed, and the spatial point of interest is put in the near wake of the

downstream cylinder. The spectral energy distributions for various cases of spacing are presented in Fig. 11. The

corresponding Strouhal number increases with the increasing of the spacing ratio, as shown in Fig. 11. When L=D ¼ 2,

the peak energy measured at the dominant frequency is about half of that found in other cases.

Measurements of the mean pressure distribution on the rear stagnant points of the upstream cylinder are taken for

the spacings varying from L=D ¼ 2 to 8, as shown in Fig. 12. Values of the coefficient of pressure, Cp, were calculated
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Fig. 10. Lift coefficient time histories for different spacings. Left: the upstream cylinder; right: the downstream cylinder.
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Fig. 11. Spectral energy distributions recorded in the wake of the downstream cylinder for different spacings: 1, L=D ¼ 2; 2, L=D ¼ 3;

3, L=D ¼ 4; 4, L=D ¼ 5; 5, L=D ¼ 8.
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with the expression

Cp ¼
PL � P0

1
2
rU2

0

,

where PL is the local surface pressure, P0 is the free-stream static pressure, and 1
2
rU2

0 is the dynamic head of the free-

stream. In the present study, the reference point is located at the center of the inflow surface. When the two cylinders are

close enough, as for L=D ¼ 2, the profile displays a unique curve with a peak found around the center of the

configuration. As shown in Fig. 12, a peak value of �0:3 is reached around the position z=D ¼ 0 for L=D ¼ 2, and the

value of Cp for other cases are all around Cp ¼ �1. From Fig. 12, we can notice that the two curves for L=D ¼ 2 and

L=D ¼ 3 are not similar. This is due to the different attributes in the gap between the two cylinders for L=D ¼ 2 and 3.

Fox and Toy (1988a) observed that when the distance between the cylinders is less than three diameters, i.e., L=Do3,

two stationary recirculation cells are present in the gap formed at the center of the cross, whereas at spacings beyond
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(a) (b) (c)

Fig. 13. The planar streamlines in the near wake of the upstream cylinder, in the x–y plane at the center of the gap for z ¼ 0. (a)

L=D ¼ 2; (b) L=D ¼ 3; (c) L=D ¼ 4.
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three diameters, i.e. L=D43, these cells are replaced by vortex shedding in the wake of the central portion of the

upstream cylinder. In this paper, it is suggested that the L=Dp3 region can be further subdivided into subregions,

similar to that of two tandem cylinders (Slaouti and Stansby, 1992). For L=D ¼ 3, a distance larger than the length of

the recirculation region of a single cylinder, intermittent vortex shedding is observed behind the upstream cylinder, and

this can be regarded as a transitional state from the state of two steady recirculation cells formed in the gap to the state

of the periodic vortex shedding from the upstream cylinder. Fig. 13 shows the streamlines in the x–y plane at z ¼ 0.

From Fig. 13(a)–(c), three types of flow pattern clearly exist. The recirculation cells for L=D ¼ 2, however, do not

persist in the spanwise direction of the upstream cylinder, since the constraint from the downstream one is not present

beyond the center of the configuration.

In order to examine the influence of the vortex shedding from the upstream cylinder on the hydrodynamic force on

the downstream cylinder, the spanwise distributions of the stagnant pressure on the downstream cylinder are presented

in Fig. 14. The results show that, regardless of the member spacing, the modification of the pressure on the downstream

cylinder due to the presence of the upstream cylinder is largely confined to a region of five diameters, �2:5Dpzp2:5D.

The stagnant pressures in the undisturbed outer region have values equal to those found at corresponding locations on

a single cylinder, whereas those within the inner region are decreased to a minimum at the center of the span, in

excellent agreement with the results obtained by Fox and Toy (1988a). For L=D ¼ 2 and 3 in Fig. 14, two troughs are

observed, indicating the reattachment of the separated shear layer from the upstream cylinder to the downstream

cylinder.
5.2. Case 2—a stationary cylinder and a downstream elastic cylinder in cruciform arrangement

In this case, the spacing is chosen to be L=D ¼ 4 and 5. The mass ratio M� ¼ 10 and the damping factor a ¼ 0:0038.
The simulations of the flow around an isolated elastic cylinder with the same group of parameters are also carried out
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for comparison. From Williamson and Govardhan (2004), there is an important question debated for about 25 years.

The question is whether a combined mass-damping parameter could reasonably collapse peak-amplitude data in the

Griffin plot. Different mass-damping parameters have been used in several studies, including the combined response

parameter Sg, so termed by Skop (1974). Despite the enormous effort over the last 25 years, the question is not yet fully

resolved. In this paper, we select fixed parameters of mass ratio and damping factor in all cases, just in order to make a

comparison.

In order to obtain a significant vortex-induced response, the frequency ratio f n=f �s is chosen from 0.5 to 1.5, here f �s
denoting the vortex-shedding frequency of the rigid cylinder and f n denoting the natural frequency of the structure. The

root-mean-square values of the cross-flow amplitude Zrms and the mean drag coefficient Cdmean of the downstream

cylinder versus the frequency ratio are shown in Figs. 15 and 16, respectively. The vortex-induced responses of a single

circular cylinder are also plotted. We can observe that the peak value of the vibrations for a single cylinder occurs at

f n=f �s ¼ 1:20. From Zhou et al. (1999), this offset from f n=f �s ¼ 1:0 is related to the added mass on the natural

frequency of the fluid–structure system. In Fig. 15, the results further show that the peak amplitude Zrms=D for

L=D ¼ 4 and 5 is lower than that of a single cylinder, and the peak bands of Zrms=D are wider for the cruciform

arrangement cases, indicating that a cylinder immersed in the wake of an upstream one in a cruciform arrangement has

a wider resonance region.

Figs. 17 and 18 show the time histories of the force coefficients and the displacement, with the frequency ratio

descending from f n=f �s ¼ 1:1 to 0.5 in Fig. 17, and the frequency ratio ascending from f n=f �s ¼ 1:1 to 1.5 in Fig. 18. The

computation for the case of f n=f �s ¼ 1:1 starts from an initial flow field where the continuity condition is satisfied. The

displacement varies with the frequency ratio, and reaches zero for the frequency ratio small or great enough.
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It is well known that for the case of a single cylinder, the vortex pattern is very similar to the one for the stationary

cylinder when the natural frequency of the cylinder is far away from the vortex shedding frequency. As the frequency

ratio decreases or increases to the resonance value, the cylinder vibration starts to affect the vortex pattern in the wake.

Fig. 19 shows the comparison of the planar vortex pattern in the wake of the downstream cylinder at frequency ratio

f n=f �s ¼ 0:5 and 1.1 for L=D ¼ 5. Two planes are intercepted at y ¼ 4 and 0 for both cases. From Fig. 19(a) and (c), one

can observe that in the plane far away from the central region of the cross, the vortices shed from the downstream

cylinder form two parallel rows of the vortices in the near wake. The vortex spacing appears to become smaller in the

streamwise direction and wider in the transverse direction when the frequency ratio approaches the resonance value,

as shown in Fig. 19(c) for f n=f �s ¼ 1:1. Such a spacing change is due to the fact that the vortices are shed at a

higher frequency in this case, thus leading to a narrowing of the streamwise distance between the vortices. In

the x–z plane at y ¼ 4, the wake has not been affected by the upstream cylinder, so is similar to that from an isolated

cylinder. In the plane at the center of the cruciform structure (of, i.e., y ¼ 0), although the wake of the downstream
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Fig. 19. Vortex pattern in x–z plane for L=D ¼ 5: (a) f n=f �s ¼ 0:5, y ¼ 4; (b) f n=f �s ¼ 0:5, y ¼ 0; (c) f n=f �s ¼ 1:1, y ¼ 4; (d) f n=f �s ¼ 1:1,
y ¼ 0.
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cylinder for both cases is affected by the vortices shedding from the upstream cylinder, the flow pattern in the case of

f n=f �s ¼ 1:1 appears more organized, and there exist more small eddies in the case of f n=f �s ¼ 0:5, as shown in Fig. 19(b)

and (d).

In Fig. 20, three-dimensional vortex structures are shown for L=D ¼ 5 at f n=f �s ¼ 0:5 and 1.1 using the l2-definition.
One can observe that the streamwise vortex structures for f n=f �s ¼ 1:1 are smaller and quantitatively fewer than

those for f n=f �s ¼ 0:5. This can be observed more clearly in Fig. 21, which shows the iso-surfaces of the streamwise

vortices for L=D ¼ 4, and the black denotes ox ¼ 0:3, the gray denotes ox ¼ �0:3. Two rows of vortices are

clearly seen near the lateral surfaces of the computational domain in Fig. 21(a), and when the frequency ratio is

increased to f n=f �s ¼ 1:1, which falls in the resonance region, these two rows of vortices move to the mixed region, as

shown in Fig. 21(b).
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Fig. 21. Iso-surfaces of streamwise vortices for L=D ¼ 4 (top view): (a) f n=f �s ¼ 0:5; (b) f n=f �s ¼ 1:1.

Fig. 20. Three-dimensional vortex structures for L=D ¼ 5 (top view): (a) f n=f �s ¼ 0:5; (b) f n=f �s ¼ 1:1.
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Another phenomenon should be noted. For f n=f �s ¼ 0:5, the wake forms a ‘4’ pattern, whereas for f n=f �s ¼ 1:1, the
wake forms a ‘o’ pattern, as shown in Fig. 20. This phenomenon is also called vortex dislocation, and is generated between

the spanwise cells due to the out-of-phase movement of the primary vortex in each cell. Following Williamson (1996a, b),

two types of vortex dislocations can be identified. In one, a rather twisted web of vortex linking occurs across the cell

boundaries. Such a dislocation is one sided and lacks symmetry. The vortex dislocation in the present study belongs to the

second category, where the two-sided dislocation occurs due to the local phase variation in the middle plane of the flow

wake. The vortex shedding from the upstream cylinder disturbs the wake of the downstream cylinder, and makes the wake at

the central region less sensitive to the vibrations. That is to say, due to the vibrations of the downstream cylinder at different

frequency ratios, the central flow wake cannot keep pace with the wake far away from the center.
6. Conclusions

The results from an extensive numerical investigation have provided details of the wake characteristics associated

with two circular cylinders arranged perpendicular to each other in a uniform flow. When the downstream cylinder is

stationary, the spacing between two cylinders ranges from L=D ¼ 2 to 8 and the Reynolds number is kept at Re ¼ 150.

Two fundamental flow patterns are found, which is related to a critical cylinder spacing. For L=Dp3, two recirculation

cells are present in the gap formed at the center of the cross, whereas for L=D43, these cells are replaced by periodic

vortex shedding from the upstream cylinder. Another effect of the spacing variation on the flow is that for L=D43, the

modification of the wake of the upstream cylinder due to the presence of the downstream cylinder is limited to the

mixed region, whereas for L=Dp3 the influenced region is significantly enlarged.

When the downstream cylinder is elastic, two representative cases of spacing, L=D ¼ 4 and L=D ¼ 5, are

investigated. The spacings are greater than the critical value obtained above. We compared the results with that from

the vortex-induced vibration of an isolated circular cylinder, and the comparisons are listed below:
(i)
 The peak amplitude Zrms=D for L=D ¼ 4 and 5 is lower than that for a single cylinder, and the resonance region is

wider for the cruciform arrangement cases than that of a single cylinder.
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(ii)
 In the x–z plane far away from the center of the cross, the vortex shedding behaves like that of a single vibrating

cylinder. In the plane at the center of the configuration, although both cases suffer from the vortices shedding from

the upstream cylinder, the case in the resonant region looks more organized.
(iii)
 When f n=f �s ¼ 0:5, the whole flow wake looks like a ‘4’ pattern, and when f n=f �s ¼ 1:1 the flow wake forms a ‘o’

pattern. This is due to the local phase variation in the middle plane of the flow wake.
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